Databases Meet Astronomy
a db view of astronomy data

Jim Gray and Don Slutz
Microsoft Research
Collaborating with:
Alex Szalay, Peter Kunszt, Ani Thakar @ JHU
Roy Williams, George Djorgovski, Julian Bunn @ Caltech
Outline

• Astronomy data
• The Virtual Observatory Concept
• The Sloan Digital Sky Survey
Astronomy Data

- In the “old days” astronomers took photos.
- Starting in the 1960’s they began to digitize (true?).
- New instruments are digital (100s of GB/nite)
- Detectors are following Moore’s law.
- Data avalanche: double every 2 years

Total area of 3m+ telescopes in the world in m², total number of CCD pixels in megapixel, as a function of time. Growth over 25 years is a factor of 30 in glass, 3000 in pixels.
Astronomy Data

• Astronomers have a few Petabytes now.
• They mine it looking for new (kinds of) objects or more of interesting ones (quasars), density variations in 400-D space, correlations in 400D space
• Data doubles every 2 years.
• Data is public after 2 years.
• So, 50% of the data is public.
• Some have private access to 5% more data.
• So: 50% vs 55% access for everyone
Astronomy Data

• But…..

• How do I get at that 50% of the data?

• Astronomers have culture of publishing.
 – FITS files and many tools.
 http://fits.gsfc.nasa.gov/fits_home.html
 – Encouraged by NASA.

• But, data “details” are hard to document.
 Astronomers want to do it but it is VERY hard.
 (What programs where used? what were the processing steps? How were errors treated?…)

• The optimistic hope: XML is the answer.

• The reality: xml is syntax and tools:
 FITS on XML will be good but…..
 Explaining the data will still be very difficult.
Astronomy Data

• And by the way, few astronomers have a spare petabyte of storage in their pocket.

• But that is getting better:
 - Public SDSS is 5% of total
 - Public SDSS is ~50GB
 - Fits on a 200$ disk drive today.

- (more on that later).

- THESIS:
 Challenging problems are publishing data providing good query & visualization tools
Outline

• Astronomy data
• The Virtual Observatory Concept
• The Sloan Digital Sky Survey
Virtual Observatory

http://www.astro.caltech.edu/nvoconf/

• Premise: Most data is (or could be) online

• So, the Internet is the world’s best telescope:
 – It has data on every part of the sky
 – In every measured spectral band: optical, x-ray, radio..
 – As deep as the best instruments (2 years ago).
 – It is up when you are up.
 The “seeing” is always great
 (no working at night, no clouds no moons no..).
 – It’s a smart telescope:
 links objects and data to literature on them.
Virtual Observatory
The Age of Mega-Surveys

• Large number of new surveys
 – multi-TB in size, 100 million objects or more
 – individual archives planned, or under way
 – **Data publication an integral part of the survey**
 – **Software bill a major cost in the survey**

• Multi-wavelength view of the sky
 – more than 13 wavelength coverage in 5 years

• Impressive early discoveries
 – finding exotic objects by unusual colors
 • L,T dwarfs, high-z quasars
 – finding objects by time variability
 • gravitational micro-lensing

Slide courtesy of Alex Szalay, modified by jim
Virtual Observatory
Federating the Archives

• The next generation mega-surveys are different
 – top-down design
 – large sky coverage
 – sound statistical plans
 – well controlled/documented data processing

• Each survey has a publication plan
• Data mining will lead to stunning new discoveries

• Federating these archives

⇒ Virtual Observatory

Slide courtesy of Alex Szalay
Virtual Observatory and Education

• In the beginning science was empirical.
• Then theoretical branches evolved.
• Now, we have a computational branches.
 – The computational branch has been simulation
 – It is becoming data analysis/visualization
• The Virtual Observatory can be used to
 – **Teach astronomy:**
 make it interactive,
 demonstrate ideas and phenomena
 – **Teach computational science skills**
Virtual Observatory Challenges

• **Size**: multi-Petabyte

 40,000 square degrees is 2 Trillion pixels

 – One band 4 Terabytes
 – Multi-wavelength 10-100 Terabytes
 – Time dimension 10 Petabytes
 – Need auto parallelism tools

• **Unsolved MetaData problem**

 – Hard to publish data & programs
 – Hard to find/understand data & programs

• **Current tools inadequate**

 – new analysis & visualization tools

• **Transition to the new astronomy**

 – Sociological issues
Demo of Virtual Sky

- Roy Williams @ Caltech
 Palomar Data with links to NED.

- Shows multiple themes,
 shows link to other sites (NED, VizeR, Sinbad, ...)

- http://virtualsky.org/servlet/Page?T=3&S=21&P=1&X=0&Y=0&W=4&F=1

And

NED @ http://nedwww.ipac.caltech.edu/index.html
Demo of Sky Server

Alex Szalay of Johns Hopkins has built a prototype sky Server (based on TerraServer design).

Outline

• Astronomy data
• The Virtual Observatory Concept
• The Sloan Digital Sky Survey
Sloan Digital Sky Survey

• For the last 12 years a group of astronomers has been building a telescope (with funding from Sloan Foundation, NSF, and a dozen universities). 90M$.

• Last year was engineer, calibrate, commission. They are making the calibration data public.
 – 5% of the survey, 600 sq degrees, 15 M objects 60GB.
 – This data includes most of the known high z quasars.
 – It has a lot of science left in it but… that is just the start.

• Now the data is arriving:
 – 250GB/nite (20 nights per year).
 – 100 M stars, 100 M galaxies, 1 M spectra.

• http://www.sdss.org/ and http://www.sdss.jhu.edu/
SDSS what I have been doing

• Worked with Alex Szalay, Don Slutz, and others to define 20 canonical queries and 10 visualization tasks.

• Don Slutz did a first cut of the queries, I have been continuing that work.

• Working with Alex Szalay on building Sky Server and making data it public (send out 80GB SQL DBs)
Two kinds of data

- 15M Photo Objects ~ 400 attributes
- 20K Spectra with ~10 lines/spectrum
Spatial Data Access
(Szalay, Kunszt, Brunner)

http://www.sdss.jhu.edu/ look at the HTM link

• Implemented Hierarchical Triangular Mesh (HTM) as table-valued function for spatial joins.
• Every object has a 20-deep Mesh ID.
• Given a spatial definition:
 Routine returns up to 500 covering triangles.
• Spatial query is then up to 500 range queries.
• Very fast: 1,000s of triangles per second.
The 20 Queries

Q1: Find all galaxies without unsaturated pixels within 1' of a given point of ra=75.327, dec=21.023
Q2: Find all galaxies with blue surface brightness between and 23 and 25 mag per square arcseconds, and -10<super galactic latitude (sgb) <10, and declination less than zero.
Q3: Find all galaxies brighter than magnitude 22, where the local extinction is >0.75.
Q4: Find galaxies with an isophotal surface brightness (SB) larger than 24 in the red band, with an ellipticity>0.5, and with the major axis of the ellipse having a declination of between 30” and 60”arc seconds.
Q5: Find all galaxies with a deVaucouleurs profile (r^1/4 falloff of intensity on disk) and the photometric colors consistent with an elliptical galaxy. The deVaucouleurs profile
Q6: Find galaxies that are blended with a star, output the deblended galaxy magnitudes.
Q7: Provide a list of star-like objects that are 1% rare.
Q8: Find all objects with unclassified spectra.
Q9: Find quasars with a line width >2000 km/s and 2.5<redshift<2.7.
Q10: Find galaxies with spectra that have an equivalent width in Ha >40Å (Ha is the main hydrogen spectral line.)
Q11: Find all elliptical galaxies with spectra that have an anomalous emission line.
Q12: Create a grided count of galaxies with u-g>1 and r<21.5 over 60<declination<70, and 200<right ascension<210, on a grid of 2’, and create a map of masks over the same grid.
Q13: Create a count of galaxies for each of the HTM triangles which satisfy a certain color cut, like 0.7u-0.5g-0.2i<1.25 && r<21.75, output it in a form adequate for visualization.
Q14: Find stars with multiple measurements and have magnitude variations >0.1. Scan for stars that have a secondary object (observed at a different time) and compare their magnitudes.
Q15: Provide a list of moving objects consistent with an asteroid.
Q16: Find all objects similar to the colors of a quasar at 5.5<redshift<6.5.
Q17: Find binary stars where at least one of them has the colors of a white dwarf.
Q18: Find all objects within 30 arcseconds of one another that have very similar colors: that is where the color ratios u-g, g-r, r-I are less than 0.05m.
Q19: Find quasars with a broad absorption line in their spectra and at least one galaxy within 10 arcseconds. Return both the quasars and the galaxies.
Q20: For each galaxy in the BCG data set (brightest color galaxy), in 160<right ascension<170, -25<declination<35 count of galaxies within 30”of it that have a photoz within 0.05 of that galaxy.

Also some good queries at:
http://www.sdss.jhu.edu/ScienceArchive/sxqt/sxQT/Example_Queies.html
An easy one

Q7: Provide a list of star-like objects that are 1% rare.

- Found 14,681 buckets,
 first 140 buckets have 99%
 time 104 seconds

- Disk bound, reads 4 disks at 68 MBps.

Select cast((u-g) as int),
 cast((g-r) as int),
 cast((r-i) as int),
 cast((i-z) as int),
 count(*)
from stars
group by cast((u-g)/2 as int), cast((g-r)/2 as int),
 cast((r-i)/2 as int), cast((i-z)/2 as int)
order by count(*)
Another easy one

Q15: Provide a list of moving objects consistent with an asteroid.

- Looks hard but there are 5 pictures of the object at 5 different times (colors) and so can compute velocity.
- Image pipeline computes velocity.
- Computing it from the 5 color x,y would also be fast.
- Finds 2167 objects in 7 minutes, 70MBps.

```
select  object_id,  -- return object ID
        sqrt(power(rowv,2)+power(colv,2)) as velocity  -- check each object.
from     sxPhotObj
where    (power(rowv,2) + power(colv, 2)) > 50  -- square of velocity
        and rowv >= 0 and colv >=0  -- negative values indicate error
```
A Hard One

Q14: Find stars with multiple measurements that have magnitude variations >0.1.

• This should work, but SQL Server does not allow table values to be piped to table-valued functions.

```
select S.object_ID, S1.object_ID  -- return stars that
from   Stars S,
getNearbyObjEq(s.ra, s.dec, 0.017) as N -- N within 1 arcsec (3 pixels)
of S.
    Stars S1  -- N == S1 (S1 gets the colors)
where S.Object_ID < N.Object_ID  -- S1 different from S == N
    and N.Type = dbo.PhotoType('Star')  -- S1 is a star (an optimization)
    and N.object_ID = S1.Object_ID  -- N == S1
    and ( abs(S.u-S1.u) > 0.1  -- one of the colors is different.
    or abs(S.g-S1.g) > 0.1
    or abs(S.r-S1.r) > 0.1
    or abs(S.i-S1.i) > 0.1
    or abs(S.z-S1.z) > 0.1 )
order by S.object_ID, S1.object_ID  -- group the answer by parent star.
```

Returns a table of nearby objects
A Hard one: Second Try

Q14: Find stars with multiple measurements that have magnitude variations >0.1.

- Write a program with a cursor, ran for 2 days
A Hard one: Third Try

Q14: Find stars with multiple measurements that have magnitude variations >0.1.

- Use pre-computed neighbors table.
- Ran in 17 minutes, found 31k pairs.

```sql
-- Plan 2: Use the precomputed neighbors table
select top 100 S.object_ID, S1.object_ID, -- return star pairs and distance
    str(N.Distance_mins * 60,6,1) as DistArcSec
from Stars S, -- S is a star
     Neighbors N, -- N within 3 arcsec (10 pixels) of S.
     Stars S1 -- S1 == N has the color attributes
where S.Object_ID = N.Object_ID -- connect S and N.
    and S.Object_ID < N.Neighbor_Object_ID -- S1 different from S
    and N.Neighbor_objType = dbo.PhotoType('Star') -- S1 is a star (an optimization)
    and N.Distance_mins < .05 -- the 3 arcsecond test
    and N.Neighbor_object_ID = S1.Object_ID -- N == S1
    and ( abs(S.u-S1.u) > 0.1
         or abs(S.g-S1.g) > 0.1
         or abs(S.r-S1.r) > 0.1
         or abs(S.i-S1.i) > 0.1
         or abs(S.z-S1.z) > 0.1
    )
-- Found 31,355 pairs (out of 4.4 m stars) in 17 min 14 sec.
```
The Pain of Going Outside SQL
(it's fortunate that all the queries are single statements)

• Count parent objects
• 503 seconds for 14.7 M objects in 33.3 GB
• 66 MBps
• IO bound (30% of one cpu)
• 100 k records/cpu sec

• Use a cursor
• No cpu parallelism
• CPU bound
• 6 MBps, 2.7 k rps
• 5,450 seconds (10x slower)

```sql
select count(*)
from sxPhotoObj
where nChild > 0
```
```
declare @count int;
declare @sum int;
set @sum = 0;
declare PhotoCursor cursor for select nChild from sxPhotoObj;
open PhotoCursor;
while (1=1)
    begin
        fetch next from PhotoCursor into @count;
        if (@@fetch_status = -1) break;
        set @sum = @sum + @count;
    end
close PhotoCursor;
deallocate PhotoCursor;
print 'Sum is: '+cast(@sum as varchar(12))
```
Summary of Current Status

- 18 of 20 queries written
 (still need to check the science)
- 14 run, 4 await spectra data.
- Run times: on 3k$ PC (2 cpu, 4 disk, 256MB)
Summary of Current Status

- 16 of the queries are simple
- 2 are iterative, 2 are unknown
- Many are sequential
 one-pass and two-pass over data
- Covering indices make scans run fast
- Table valued functions are wonderful
 but limitations on parameters are a pain.
- Counting is VERY common.
- Binning (grouping by some set of attributes) is common
- Did not request cube, but that may be cultural.
Reflections on the 20 Queries

• This is 5% of the data, and some queries take an hour.
• But this is not tuned (disk bound).
• All queries benefit from parallelism (both disk and cpu) (if you can state the query right, e.g. inside SQL).
• Parallel database machines will do great on this:
 – Hash machines
 – Data pumps
 – See paper in word or pdf on my web site.

• **Bottom line:** SQL looks good.
 Once you get the answers, you need visualization
What Next?
(after the queries, after the web server)

• How to federate the Archives to make a VO?
• Send XML: a non-answer equivalent to “send unicode”
• Define a set of Astronomy Objects and methods.
 – Based on UDDI, WSDL, SOAP.
 – Each archive is a service
• We have started this with TerraService
 – http://terraserver.microsoft.net/TerraService.htm shows the idea.
 – Working with Caltech (Williams, Djorgovski, Bunn) and JHU (Szalay et al) on this
Call to Action

• If you are a vis-person: we need you (and we know it).

• If you are a database person: here is some data you can practice on.

• If you are a distributed systems person: here is a federation you can practice on.

• These astronomy folks are very good and very smart and a pleasure to work with, and the questions are cosmic, so …